Raman optical activity and circular dichroism reveal dramatic differences in the influence of divalent copper and manganese ions on prion protein folding.
نویسندگان
چکیده
The binding of divalent copper ions to the full-length recombinant murine prion protein PrP23-231 at neutral pH was studied using vibrational Raman optical activity (ROA) and ultraviolet circular dichroism (UV CD). The effect of the Cu2+ ions on PrP structure depends on whether they are added after refolding of the protein in water or are present during the refolding process. In the first case ROA reveals that the hydrated alpha-helix is lost, with UV CD revealing a drop from approximately 25% to approximately 18% in the total alpha-helix content. The lost alpha-helix could be that comprising residues 145-156, located within the region associated with scrapie PrP formation. In the second case, ROA reveals the protein's structure to be almost completely disordered/irregular, with UV CD revealing a drop in total alpha-helix content to approximately 5%. Hence, although Cu2+ binding takes place exclusively within the unfolded/disordered N-terminal region, it can profoundly affect the structure of the folded/alpha-helical C-terminal region. This is supported by the finding that refolding in the presence of Cu2+ of a mutant in which the first six histidines associated with copper binding to the N-terminal region are replaced by alanine has a similar alpha-helix content to the metal-free protein. In contrast, when the protein is refolded in the presence of divalent manganese ions, ROA indicates the alpha-helix is reinforced, with UV CD revealing an increase in total alpha-helix content to approximately 30%. The very different influence of Cu2+ and Mn2+ ions on prion protein structure may originate in the different stability constants and geometries of their complexes.
منابع مشابه
In vitro study of drug-protein interaction using electronic absorption, fluorescence, and circular dichroism spectroscopy
In the near future, design of a new generation of drugs targeting proteins will be required. Considering the complex bond between the drug and protein, the structure and stability of the target protein should be considered. So far, a series of in vitro investigations have been conducted with the aim of predicting drug-biological medium interactions. In these studies, use of spectroscopic method...
متن کاملOptimization of Parameters that Affect the Activity of the Alkaline Protease from Halotolerant Bacterium, Bacillus acquimaris VITP4, by the Application of Response Surface Methodology and Evaluation of the Storage Stability of the Enzyme
Background: It was previously shown that the activity of a serine protease from a moderately halotolerant Bacillus aquimaris VITP4 strain is active in a wide range of pH and temperatures and could be modulated by the presence of the divalent metal ions. Objectives: In the present study, a quantitative analysis was done in order to explore the parameters that are contributing to the protease a...
متن کاملDivalent metal cofactor binding in the kinetic folding trajectory of Escherichia coli ribonuclease HI.
Proteins often require cofactors to perform their biological functions and must fold in the presence of their cognate ligands. Using circular dichroism spectroscopy. we investigated the effects of divalent metal binding upon the folding pathway of Escherichia coli RNase HI. This enzyme binds divalent metal in its active site, which is proximal to the folding core of RNase HI as defined by hydro...
متن کاملDifferential effects of divalent cations on elk prion protein fibril formation and stability
Misfolding of the normally folded prion protein of mammals (PrPC) into infectious fibrils causes a variety of diseases, from scrapie in sheep to chronic wasting disease (CWD) in cervids. The misfolded form of PrPC, termed PrPSc, or in this case PrPCWD, interacts with PrPC to create more PrPCWD. This process is not clearly defined but is affected by the presence and interactions of biotic and ab...
متن کاملChicken prion tandem repeats form a stable, protease-resistant domain.
Prion-linked diseases, such as mad cow disease, scrapie, and the human genetic disorder Creutzfeldt-Jakob disease, are fatal neurodegenerative diseases correlated with changes in the secondary structure of neural prion protein. We expressed recombinant chicken prion protein in Escherichia coli and purified the protein to homogeneity. Circular dichroism spectra of the 26 kDa recombinant protein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 47 8 شماره
صفحات -
تاریخ انتشار 2008